Dynamic borrowing of historical data:

Performance and comparison of existing methods based on a case study

D. Dejardin¹, P. Delmar¹, K. Patel¹, C. Warne¹, J. van Rosmalen², E. Lesaffre³.

¹: F. Hoffmann-La Roche, Basel; ²: Erasmus MC, Rotterdam; ³: I-Biostat, KULeuven, Leuven

Outline

- Introduction
 - Case Study
 - Bayesian Borrowing
- Methods
 - Normalized Power Prior
 - Mixture Prior
 - Commensurate Prior
- Simulations
 - Simulations setting
 - Simulation results
- Discussion

Introduction: Antibiotic development

- Number of antibiotics under development low
 - Traditionally large programs required for approval
 - Lack of return on investment
- Growing concerns on antibiotic resistance
 - Unmet medical need (high mortality)
 - Small target population
- Evolving regulatory context
 - Pre-clinical evidence accepted
 - Use of historical data mentioned (FDA guidance for industry 2013)
 - Bayesian methods accepted for devices (FDA guidance for industry) 2010)

Introduction: Case study

- Design of phase III comparative study of new agent against pseudomonas aeruginosa (p.a.)
- Target population: Ventilator associated and hospital acquired pneumonia
- Rare condition:
 - 5-10 VAH/HAP per 1,000 hospital admissions
 - 20% caused by p.a.
- Maximum enrollment: 300 subjects total
- Endpoint: 14 days mortality rate (binomial)
- Non-inferiority combo design (maximize safety database)

- Subjects are rare
- Need to maximize safety database
 - ⇒ unbalanced randomization
- Subjects infected, diagnosed, treated, followed up in hospital
 - ⇒ hope for detailed medical record for historical data

Historical Control

Pocock criteria

- Treatment in historical control same as randomized control
 - \Rightarrow Met
- Historical control form control CT is recent and identical inclusion criteria
 - ⇒ Not met
- Evaluation of endpoint is the same
 - \Rightarrow Met
- Oistribution of important subject characteristics are the same
 - ⇒ Met
- 6 Historical control must be treated in same institution and same investigators
 - \Rightarrow Met
- No other indications to expect different outcome
 - \Rightarrow Met

Historical Control

Pocock criteria

- Treatment in historical control same as randomized control
 - \Rightarrow Met
- Historical control form control CT is recent and identical inclusion criteria
 - ⇒ Not met
- Evaluation of endpoint is the same
 - \Rightarrow Met
- Oistribution of important subject characteristics are the same
 - ⇒ Met
- 6 Historical control must be treated in same institution and same investigators
 - \Rightarrow Met
- No other indications to expect different outcome
 - ⇒ Met
 - Very strict criteria
 - No guaranty that prior match

Historical control and randomized control

Concern: Uncontrolled factors may impact validity of historical control

Historical control and randomized control

- Concern: Uncontrolled factors may impact validity of historical control
- Use Small randomized control to check compatibility of historical control

Goal of methods

Increase precision when compatible, control bias when not compatible

Goal of methods

Increase precision when compatible, control bias when not compatible

Compatible historical data

Goal of methods Increase precision when compatible, control bias when not compatible

Compatible historical data

Goal of methods

Increase precision when compatible, control bias when not compatible

Compatible historical data

Goal of methods

Increase precision when compatible, control bias when not compatible

Compatible historical data

Increase in precision

Goal of methods

Increase precision when compatible, control bias when not compatible

Compatible historical data

Increase in precision

Incompatible historical data

Goal of methods

Increase precision when compatible, control bias when not compatible

Compatible historical data

Incompatible historical data

Increase in precision

Goal of methods

Increase precision when compatible, control bias when not compatible

Compatible historical data

Increase in precision

Incompatible historical data

Full Borrowing

Increase in Rias

Goal of methods

Increase precision when compatible, control bias when not compatible

Compatible historical data

Increase in precision

Incompatible historical data

Dynamic Borrowing

Bias controlled

- Normalized power prior
- Robust mixture prior
- Commensurate prior

Prior for event rate p:

$$\pi^P(p, \theta | H) \propto \frac{1}{C(\theta)} \left[\underbrace{L^H(p)}_{\text{Historical data}} \right]^{\theta} \underbrace{\pi_v(p)}_{\text{vague prior vague prior for } \theta}$$

- Historical data (H) prior raised to power θ
- $\theta \in [0,1] = \text{measure of compatibility}$
 - $\theta = 0 \Rightarrow \text{No Borrowing}$
 - $\theta = 1 \Rightarrow \mathsf{FULL}$ Borrowing
- \bullet θ jointly estimated with ρ

Robust Mixture prior

Prior for event rate p:

$$\pi^{mx}(p|H) = \mathbf{w} \underbrace{\pi^{H}(p)}_{\text{Historical data}} + (1 - \mathbf{w}) \underbrace{\pi^{v}(p)}_{\text{vague prior}}$$

- Weights w are pre-specified
- Determined through simulations
- Weights are updated in posterior
- Random weights possible, but do not depend on data

Commensurate prior

$$\pi^{C}(p, p_h, \sigma|H) \propto L^{H}(p_h) \underbrace{\psi(p, p_h, \sigma)}_{\text{link function}} \underbrace{\pi_{V}(p_h, \sigma)}_{\text{vague prior}}$$

- Separate parameters for randomized (p) and historical (p_h)
- Connected through a link function (distribution)
 - Mean of link distribution = p_h
 - Variance = σ = measure of compatibility
 - High variance ⇒ Low compatibility
 - Low variance ⇒ high compatibility

Note on method

All methods depend on parameters: Need for calibration

- Robust Mixture Prior: pre-specified weight w
- Commensurate prior: Prior for variance $\pi_{\nu}(\sigma)$
- Normalized power prior: Prior for power parameter $\pi_{\nu}(\theta)$ \Rightarrow Natural choice: Jeffreys' prior Beta(1/2,1/2)
- ⇒ All methods calibrated on NPP
- ⇒ On maximum type I error

Simulations

Goal of simulations

Compare methods:

- Impact of drift on type I error
- Increase in power
- Against
 - Frequentist test: No borrowing, just randomized data
 - Full borrowing: Simple Bayesian analysis (pooled analysis)

Here:

- Design stage: Best assumptions on control and experimental mortality rate
- Control collected at site opening:
 - Unknown historical rate
 - Historical rate to be simulated as well

Simulation settings

- Non-inferiority test for mortality rate (\sqrt better)
- Rate in randomized control: $p_c = 25\%$
- Non inferiority margin = 12.5%Positive test if 95% CI of difference $p_e - p_c < 12.5\%$
- Rate in Incompatible historical control: $p_h = 37.5\%$
- Rate in compatible historical control: $p_h = 25\%$
- Sample size:
 - Historical control: 200
 - Randomized control: 100
 - Experimental arm: 200

Results

- Maximum α set to 10% (following calibration)
- Power gain: 12% (Power = 82%)
- All methods similar

Comparison with frequentist

- Previous plot: All methods calibrated to $max(\alpha) = 0.10$ Except "Frequentist" α =0.025
- 2 options align α
 - **1** Lower Dynamic borrowing to maximum $\alpha \leq 0.025$
 - Allow frequentist to have $\alpha = 10\%$

- Dynamic borrowing to maximum $\alpha \le 0.025$
- Change width of CI (methods use 95% CI):
 Width: 95% ⇒ 99%

- Dynamic borrowing to maximum $\alpha \le 0.025$
- Change width of CI (methods use 95% CI): Width: $95\% \Rightarrow 99\%$

 Power reduced from 0.82 to 0.54

- Dynamic borrowing to maximum $\alpha \le 0.025$
- Change width of CI (methods use 95% CI): Width: $95\% \Rightarrow 99\%$

- Power reduced from 0.82 to 0.54
- Power of dynamic borrowing (0.54) lower than no historical data (0.66)

- Frequentist $\alpha = 10\%$
- Power of frequentist method increases → 0.87
- Frequentist higher power than Dynamic borrowing (0.82)

Dynamic Bayesian Borrowing

• Frequentist α constant = 0.1 over drift

19 / 21

- Frequentist $\alpha = 10\%$
- Power of frequentist method increases → 0.87
- Frequentist higher power than Dynamic borrowing (0.82)

- Frequentist α constant = 0.1 over drift
- Dynamic borrowing α mostly below 0.1

- Frequentist $\alpha = 10\%$
- ullet Power of frequentist method increases ightarrow 0.87
- Frequentist higher power than Dynamic borrowing (0.82)

Discussion

Can Dynamic borrowing replace a frequentist analysis (gain power)

- NO, when strict control of α required
- YES , if some increase is allowed
 - Makes sense: Historical data = trustworthy source of data
 - Type I error inflation depends on historical data
 - Risk (α /power) of historical data is limited but not suppressed!

Benefits of Dynamic borrowing

- Limit bias, type I error compared to full borrowing in case incompatible data
- Mixture prior is best (Simple needs optimization fast)
- Commensurate difficult to implement
 Linked to variance parameter controlling for compatibility

References

- Pocock, S. J. The combination of randomized and historical controls in clinical trials Journal of Chronic Diseases, 1976, 29, 175 - 188
- Hobbs, B. P.; Carlin, B. P.; Mandrekar, S. J. & Sargent, D. J. Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials, Biometrics, 2011, 67, 1047-1056
- Duan, Y.; Ye, K. & Smith, E. P. Evaluating water quality using power priors to incorporate historical information, Environmetrics, John Wiley & Sons, Ltd., 2006, 17, 95-106
- Neuenschwander, B.; Branson, M.& Spiegelhalter, D. J. A note on the power prior, Statistics in Medicine, John Wiley & Sons, Ltd., 2009, 28, 3562-3566
- Schmidli, H.; Gsteiger, S.; Roychoudhury, S.; O'Hagan, A.; Spiegelhalter, D. & Neuenschwander, B. Robust meta-analytic-predictive priors in clinical trials with historical control information. Biometrics. 2014