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Introduction: Antibiotic development

@ Number of antibiotics under development low
e Traditionally large programs required for approval
e Lack of return on investment

@ Growing concerns on antibiotic resistance

o Unmet medical need (high mortality)

e Small target population

@ Evolving regulatory context

e Pre-clinical evidence accepted
o Use of historical data mentioned (FDA guidance for industry 2013)

o Bayesian methods accepted for devices (FDA guidance for industry
2010)
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Introduction: Case study

@ Design of phase Ill comparative study of new agent against
pseudomonas aeruginosa (p.a.)

@ Target population: Ventilator associated and hospital acquired
pneumonia

@ Rare condition:

o 5-10 VAH/HAP per 1,000 hospital admissions
o 20% caused by p.a.

@ Maximum enrollment: 300 subjects total
e Endpoint: 14 days mortality rate (binomial)

e Non-inferiority combo design (maximize safety database)
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Motivation for use of historical control

@ Subjects are rare

@ Need to maximize safety database

= unbalanced randomization

@ Subjects infected, diagnosed, treated, followed up in hospital
= hope for detailed medical record for historical data
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Historical Control

Pocock criteria

@ Treatment in historical control same as randomized control
= Met

@ Historical control form control CT is recent and identical inclusion criteria
= Not met

Evaluation of endpoint is the same
= Met

Distribution of important subject characteristics are the same
= Met

Historical control must be treated in same institution and same investigators
= Met

© 06 6 o

No other indications to expect different outcome
= Met
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Historical Control

Pocock criteria

@ Treatment in historical control same as randomized control
= Met

@ Historical control form control CT is recent and identical inclusion criteria
= Not met

Evaluation of endpoint is the same
= Met

Distribution of important subject characteristics are the same
= Met

Historical control must be treated in same institution and same investigators
= Met

© 06 6 o

No other indications to expect different outcome
= Met

@ Very strict criteria
@ No guaranty that prior match
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Historical control and randomized control

@ Concern: Uncontrolled factors may impact validity of historical
control
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Historical control and randomized control

@ Concern: Uncontrolled factors may impact validity of historical
control

@ Use Small randomized control to check compatibility of historical
control

‘ Historical control ‘

.

_~  Randomized control ‘
<
“‘ Experimental arm ‘
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Dynamic Bayesian Borrowing

Goal of methods

Increase precision when compatible, control bias when not compatible
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Dynamic Bayesian Borrowing

Goal of methods

Increase precision when compatible, control bias when not compatible

Compatible historical data Incompatible historical data

Historical control .
Posterior - Dynamic Borrowing
Posterior — Full Borrowing
Randomized control

Historical control )
Posterior — Dynamic Borrowing
Posterior — Full Borrowing
Randomized control

event prop. event prop.

@ Increase in precision Dynamic Borrowing

@ Bias controlled
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Methods

o Normalized power prior
@ Robust mixture prior

o Commensurate prior
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Normalized power prior

Prior for event rate p:

1 0
R OH) < e L e | ) )
S~ Historical data  vague prior vague prior for 6

Normalizing cst

e Historical data (H) prior raised to power ¢
e ¢ € [0,1] = measure of compatibility

e 6 =0 = No Borrowing
e § =1= FULL Borrowing

@ 0 jointly estimated with p
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Robust Mixture prior

Prior for event rate p:

(plH) = w o 7p) 4 (1-w) 7(p)
—— ——

Historical data vague prior

@ Weights w are pre-specified
@ Determined through simulations
@ Weights are updated in posterior

@ Random weights possible, but do not depend on data
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Commensurate prior

7 (p,polH) o< LH(pr)  6(p,pra) mul(phio)
—— ——— N——

Historical data link function  vague prior

@ Separate parameters for randomized (p) and historical (py,)
e Connected through a link function (distribution)

e Mean of link distribution =
e Variance = 0 = measure of compatibility

o High variance = Low compatibility
@ Low variance = high compatibility
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Note on method

All methods depend on parameters : Need for calibration
@ Robust Mixture Prior: pre-specified weight w
e Commensurate prior: Prior for variance 7, (o)

o Normalized power prior: Prior for power parameter 7, (6)
= Natural choice: Jeffreys' prior Beta(1/2,1/2)

= All methods calibrated on NPP
= On maximum type | error
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Simulations

Goal of simulations

Compare methods:
@ Impact of drift on type | error
@ Increase in power
o Against

o Frequentist test: No borrowing, just randomized data
o Full borrowing: Simple Bayesian analysis (pooled analysis)

Here:
@ Design stage: Best assumptions on control and experimental
mortality rate
@ Control collected at site opening:

o Unknown historical rate
e Historical rate to be simulated as well
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Simulation settings

e Non-inferiority test for mortality rate (\, better)
@ Rate in randomized control: p. = 25%
@ Non inferiority margin = 12.5%
Positive test if 95% Cl of difference p. — p. < 12.5%
@ Rate in Incompatible historical control: p, = 37.5%
@ Rate in compatible historical control: pp = 25%

@ Sample size:

o Historical control : 200
e Randomized control: 100
e Experimental arm: 200
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Results

TYPE | ERROR POWER

| —> Nl easier =

000 008 010 015 o020 02 01 00 01 02

orit (ph-pe) o (ph-pe)

@ Maximum « set to 10% (following calibration)
e Power gain: 12% (Power = 82%)

@ All methods similar
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Comparison with frequentist

@ Previous plot: All methods calibrated to max(«)= 0.10

Except “Frequentist” a=0.025

@ 2 options align «

@ Lower Dynamic borrowing to maximum « < 0.025

@ Allow frequentist to have o = 10%
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Option 1

o Dynamic borrowing to maximum « < 0.025

e Change width of Cl (methods use 95% Cl):
Width: 95% = 99%

POWER

S 4 — wep
— RWP
cp

Power

T T T T
-02 -01 00 01 02

Drift (ph-pc)
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Option 1

o Dynamic borrowing to maximum « < 0.025

e Change width of Cl (methods use 95% Cl):
Width: 95% = 99%

POWER

& @ Power reduced from 0.82

N e to 0.54

@ Power of dynamic

borrowing (0.54) lower
. than no historical data
(0.66)
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Option 2

o Frequentist o = 10%
@ Power of frequentist method increases — 0.87
o Frequentist higher power than Dynamic borrowing (0.82)

TYPE | ERROR

— PP
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Discussion

e Can Dynamic borrowing replace a frequentist analysis (gain
power)

e NO, when strict control of a required

o YES , if some increase is allowed
o Makes sense: Historical data = trustworthy source of data
o Type | error inflation depends on historical data

o Risk (a/power) of historical data is limited but not suppressed!

o Benefits of Dynamic borrowing
e Limit bias, type | error compared to full borrowing in case incompatible
data
e Mixture prior is best (Simple - needs optimization - fast)

e Commensurate difficult to implement
Linked to variance parameter controlling for compatibility
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