The hypothetical estimand and its potential estimators in clinical trials impacted by COVID-19

Kelly Van Lancker
on behalf of the NISS working group
Complications due to pandemic

1. Due to **administrative/operational challenges**: e.g., treatment discontinuation due to drug supply issues, missed visits due to lockdown, . . .

2. Directly related to impact of COVID-19 on **health status**: e.g., death due to COVID-19, treatment discontinuation due to COVID-19 symptoms, . . .
Additional Intercurrent Events

- Protocol deviations inevitable result in:
 - Increased missing data and different types of missing data
 - Affected interpretation or existence of the measurements associated with the clinical question of interest (intercurrent events)
Additional Intercurrent Events

- Protocol deviations inevitable result in:
 - Increased missing data and different types of missing data
 - Affected interpretation or existence of the measurements associated with the clinical question of interest (*intercurrent events*)

- Unforeseen intercurrent events due to COVID-19
 - Introduce ambiguity to the original trial questions
 - Teams need to discuss how to account for them
Example: treatment discontinuation

- Hypothetical strategy: “had patients not discontinued treatment”
 - Need to predict the hypothetical outcome
Example: treatment discontinuation

- **Hypothetical strategy**: “had patients not discontinued treatment”
 - Need to predict the hypothetical outcome

- **Treatment policy strategy**: “intercurrent event as part of the treatment”
 - No adaptation of the original estimand
Hypothetical Estimands

- A world where **COVID-19 does not exist**

- A world where **COVID-19 exists but is under control**:
 - individuals can suffer from COVID-19 infections
 - administrative/operational challenges caused by the pandemic assumed absent
Motivating Example

■ Double-blind randomized trial in a neuroscience indication

■ Comparing a new treatment \((A = 1)\) with placebo \((A = 0)\) wrt an outcome on a continuous diseases rating scale at 24 months

 - \(Y_t\): outcome measured at time \(t\) \((t \in \{0, \ldots, 8\})\)

■ \(X_t\): time-varying covariates measured at time \(t\) \((t \in \{0, \ldots, 8\})\)

■ \(\bar{X}_t\) and \(\bar{Y}_t\): history until (and including) timepoint \(t\)
Motivating Example

- Following intercurrent events were added to address impact of pandemic:
 - Infections with the COVID-19 virus, COVID-19 vaccinations or treatments: treatment-policy strategy
 - Withdrawal from or interruption of medication due to pandemic-related reasons: hypothetical strategy

“A world where COVID-19 exists but is under control”
Motivating Example

- Following intercurrent events were added to address impact of pandemic:
 - Infections with the COVID-19 virus, COVID-19 vaccinations or treatments: **treatment-policy strategy**
 - Withdrawal from or interruption of medication due to pandemic-related reasons: **hypothetical strategy**

 “A world where COVID-19 exists but is under control”

- **\(E_t \):** indicator for occurrence of (second) intercurrent event at time \(t \) \((t \in \{1, \ldots, 8\}) \)
Motivating Example

- Following intercurrent events were added to address impact of pandemic:
 - Infections with the COVID-19 virus, COVID-19 vaccinations or treatments: **treatment-policy strategy**
 - Withdrawal from or interruption of medication due to pandemic-related reasons: **hypothetical strategy**

 “A world where COVID-19 exists but is under control”

- E_t: indicator for occurrence of (second) intercurrent event at time t ($t \in \{1, \ldots, 8\}$)

Hypothetical treatment effect estimand

$$
\theta = E \left(Y_8^{a=1, \bar{E}_8=0} \right) - E \left(Y_8^{a=0, \bar{E}_8=0} \right)
$$
Potential estimators

1 Estimators from **missing data literature**

Potential estimators

1. Estimators from **missing data literature**

2. Estimators that **combine unbiased and possibly biased estimators**\(^1\)
 - Unbiased estimator: based on data observed before COVID-19 outbreak (not impacted by COVID-19)
 - Possibly biased estimator: based on data observed after COVID-19 outbreak

Missing data estimation

- **Monotone missingness**: data after relevant intercurrent event
 - may be physically missingness, or
 - if observed can be initially set missing
Missing data estimation

- **Monotone missingness**: data after relevant intercurrent event
 - may be physically missingness, or
 - if observed can be initially set missing

- **Missing at random (MAR) assumption**: at each time in study, we have access to all prognostic factors (possibly time-varying) of outcome that are associated with having an intercurrent event
Missing data estimation: observed data
A **linear mixed model for repeated measures**, including treatment and baseline covariates, can be fitted to all observed data unaffected by relevant intercurrent events.

- Different endpoints: Cox model or generalized linear mixed model.
Likelihood based analyses and multiple imputation

- A **linear mixed model for repeated measures**, including treatment and baseline covariates, can be fitted to all observed data unaffected by relevant intercurrent events.
 - Different endpoints: Cox model or generalized linear mixed model

- Alternatively, **multiple imputation** samples missing data from the conditional distribution of the missing outcomes given treatment indicator, baseline covariates and observed outcomes.
Advantages and limitations

- **Consistent and asymptotically efficient** when
 - MAR holds (assuming no time-varying covariates are relevant, except outcome)
 - Analysis (and imputation) models are correctly specified

In theory, time-varying prognostic factors can be accommodated. However, this complicates implementation as these factors need to be (jointly) modeled/imputed. Higher risk of model misspecification when people with and without missing data are very different.
Advantages and limitations

- **Consistent and asymptotically efficient** when
 - MAR holds (assuming no time-varying covariates are relevant, except outcome)
 - Analysis (and imputation) models are correctly specified

- In theory, time-varying prognostic factors can be accommodated
Advantages and limitations

- **Consistent and asymptotically efficient** when MAR holds (assuming no time-varying covariates are relevant, except outcome)
 - Analysis (and imputation) models are correctly specified

- In theory, time-varying prognostic factors can be accommodated

- However, this **complicates implementation** as these factors need to be (jointly) modeled/imputed
 - Higher risk of model misspecification
Advantages and limitations

- **Consistent and asymptotically efficient** when
 - MAR holds (assuming no time-varying covariates are relevant, except outcome)
 - Analysis (and imputation) models are correctly specified

- In theory, time-varying prognostic factors can be accommodated

- However, this **complicates implementation** as these factors need to be (jointly) modeled/imputed
 - Higher risk of model misspecification

- When people with and without missing data are very different, these methods rely on **extrapolation**
Inverse Probability Weighting

- Weight observed data in an appropriate manner that corrects for the patients with missing data:

1. At each timepoint t: estimate $P(E_t = 0 | A, \bar{E}_{t-1}, \bar{X}_{t-1}, \bar{Y}_{t-1})$

2. Calculate the weights: $W_i = \prod_{t=1}^{8} \frac{1}{P(E_t, i = 0 | A_i, \bar{E}_t, i, \bar{X}_{t-1}, i, \bar{Y}_{t-1})}$

3. Obtain estimate for θ: $\hat{\theta} = \frac{n-1}{n} \sum_{i=1}^{n} I(A_i = 1, \bar{E}_8, i = \bar{0}) W_i Y_8, i - \frac{n-1}{n} \sum_{i=1}^{n} I(A_i = 0, \bar{E}_8, i = \bar{0}) W_i Y_8, i$
Inverse Probability Weighting

- Weight observed data in an appropriate manner that corrects for the patients with missing data:

1. At each timepoint t: estimate $P(E_t = 0|A, \bar{E}_{t-1}, \bar{X}_{t-1}, \bar{Y}_{t-1})$
Inverse Probability Weighting

- Weight observed data in an appropriate manner that corrects for the patients with missing data:

 1. At each timepoint t: estimate $P(E_t = 0 | A, \bar{E}_{t-1}, \bar{X}_{t-1}, \bar{Y}_{t-1})$

 2. Calculate the weights: $W_i = \prod_{t=1}^{8} \frac{1}{P(E_{t,i} = 0 | A_i, \bar{E}_{t-1,i}, \bar{X}_{t-1,i}, \bar{Y}_{t-1,i})}$
Inverse Probability Weighting

- Weight observed data in an appropriate manner that corrects for the patients with missing data:

1. At each timepoint \(t \): estimate \(P(E_t = 0|A, \bar{E}_{t-1}, \bar{X}_{t-1}, \bar{Y}_{t-1}) \)

2. Calculate the weights: \(W_i = \prod_{t=1}^{8} \frac{1}{P(E_{t,i} = 0|A_i, \bar{E}_{t-1,i}, \bar{X}_{t-1,i}, \bar{Y}_{t-1,i})} \)

3. Obtain estimate for \(\theta \):

\[
\hat{\theta} = n_1^{-1} \sum_{i=1}^{n} I(A_i = 1, \bar{E}_{8,i} = \bar{0}) W_i Y_{8,i} \\
- n_0^{-1} \sum_{i=1}^{n} I(A_i = 0, \bar{E}_{8,i} = \bar{0}) W_i Y_{8,i}
\]
Inverse Probability Weighting

- **Consistent** estimator provided that
 - MAR holds (allowing for time-varying covariates)
 - Model for not having a relevant intercurrent event (no missingness) is correctly specified
 - Positivity assumption holds: probability of not having an intercurrent event given observed history is always positive
Inverse Probability Weighting

- **Consistent** estimator provided that
 - MAR holds (allowing for time-varying covariates)
 - Model for not having a relevant intercurrent event (no missingness) is correctly specified
 - Positivity assumption holds: probability of not having an intercurrent event given observed history is always positive

- Easily allows for time-varying prognostic factors of missingness
Inverse Probability Weighting

- **Consistent** estimator provided that
 - MAR holds (allowing for time-varying covariates)
 - Model for not having a relevant intercurrent event (no missingness) is correctly specified
 - Positivity assumption holds: probability of not having an intercurrent event given observed history is always positive

- Easily **allows for time-varying prognostic factors** of missingness

- **Less efficient** than likelihood based/imputation approaches
Improving upon previous estimators

- Can we improve upon the efficiency of the IPW estimator?
- Can we obtain methods that are more robust against model misspecification than previous estimators?
Improving upon previous estimators

- Can we **improve upon the efficiency** of the IPW estimator?
- Can we obtain methods that are **more robust against model misspecification** than previous estimators?

Possible solution:

Augmented inverse probability weighting
Missing data estimation: observed data
Augmented Inverse Probability Weighting

Cohort 1
\[\bar{E}_2 = \bar{0} \]
Cohort 2
\[E_1 = 0; \ E_2 = 1 \]
Cohort 3
\[\bar{E}_2 = \bar{1} \]

Estimator for
\[E(\bar{Y}_a = 1, \bar{E}_2 = \bar{0}) \]
is obtained by

1. Fitting a (weighted) linear model for \(\bar{Y}_2 \) among the treated (\(A = 1 \)) patients in cohort 1 (\(\bar{E}_2 = \bar{0} \)) given \(\bar{X}_1 \) and \(\bar{Y}_1 \)

2. Using this model to impute \(\bar{Y}_2 \) for the treated patients in cohort 1 and cohort 2.
Augmented Inverse Probability Weighting

Cohort 1: $\bar{E}_2 = \bar{0}$
Cohort 2: $E_1 = 0; \ E_2 = 1$
Cohort 3: $\bar{E}_2 = \bar{1}$

- Y_2
- ?
- ?

Estimator for $E(Y_{a=1}, \bar{E}_2 = \bar{0})$ is obtained by:

1. Fitting a (weighted) linear model for Y_2 among the treated $(A = 1)$ patients in cohort 1 given \bar{X}_1 and \bar{Y}_1.
2. Using this model to impute Y_2 for the treated patients in cohort 1 and 2.
Augmented Inverse Probability Weighting

Estimator for $E \left(Y_2^{a=1, E_2=0} \right)$ is obtained by

Fitting a (weighted) linear model for Y_2 among the treated ($A = 1$) patients in cohort 1 ($\bar{E}_2 = \bar{0}$) given \bar{X}_1 and \bar{Y}_1.

Using this model to impute Y_2 for the treated patients in cohort 1 and 2.

Cohort 1: $\bar{E}_2 = \bar{0}$
Cohort 2: $E_1 = 0; E_2 = 1$
Cohort 3: $\bar{E}_2 = \bar{1}$

$A = 1$

Y_2
Augmented Inverse Probability Weighting

<table>
<thead>
<tr>
<th>Cohort 1</th>
<th>Cohort 2</th>
<th>Cohort 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\bar{E}_2 = 0$</td>
<td>$E_1 = 0; E_2 = 1$</td>
<td>$\bar{E}_2 = \bar{1}$</td>
</tr>
</tbody>
</table>

$A = 1$

Estimator for $E \left(Y_2^{a=1, \bar{E}_2=\bar{0}} \right)$ is obtained by

1. Fitting a (weighted) linear model for Y_2 among the treated $(A = 1)$ patients in cohort 1 ($\bar{E}_2 = \bar{0}$) given \bar{X}_1 and \bar{Y}_1
Augmented Inverse Probability Weighting

Estimator for $E \left(Y_2^{a=1, \bar{E}_2=0} \right)$ is obtained by

1. Fitting a (weighted) linear model for Y_2 among the treated ($A = 1$) patients in cohort 1 ($\bar{E}_2 = \bar{0}$) given \bar{X}_1 and \bar{Y}_1

2. Using this model to impute Y_2 for the treated patients in cohort 1 and 2
Augmented Inverse Probability Weighting

\[\bar{E}_2 = 0; \quad E_1 = 0; \quad E_2 = 1 \]

Cohort 1

Cohort 2

Cohort 3

\[\hat{Y}_2(\bar{X}_1, \bar{Y}_1) \]

\[\hat{Y}_2(\bar{X}_1, \bar{Y}_1) \]

?
Augmented Inverse Probability Weighting

3 Fitting a (weighted) linear model for the prediction $\hat{Y}_2(\bar{X}_1, \bar{Y}_1)$ among the treated ($A = 1$) patients in the imputed dataset (cohort 1 and 2; $E_1 = 0$) given X_0 and Y_0
Augmented Inverse Probability Weighting

Fitting a (weighted) linear model for the prediction \(\hat{Y}_2(\tilde{X}_1, \tilde{Y}_1) \) among the treated \((A = 1) \) patients in the imputed dataset (cohort 1 and 2; \(E_1 = 0 \)) given \(X_0 \) and \(Y_0 \).

Using this model to impute \(Y_2 \) for all patients.
Augmented Inverse Probability Weighting

1. Cohort 1: $\bar{E}_2 = \bar{0}$
2. Cohort 2: $E_1 = 0; E_2 = 1$
3. Cohort 3: $E_1 = 1$
4. $A = 0$

\[\hat{Y}_2(X_0, Y_0) \]

3. Fitting a (weighted) linear model for the prediction $\hat{Y}_2(\bar{X}_1, \bar{Y}_1)$ among the treated $(A = 1)$ patients in the imputed dataset (cohort 1 and 2; $E_1 = 0$) given X_0 and Y_0

4. Using this model to impute Y_2 for all patients

5. Take the sample average of the fitted values $\hat{Y}_2(X_0, Y_0)$ for all patients
Augmented Inverse Probability Weighting

- Becomes more complicated for more timepoints
Augmented Inverse Probability Weighting

- Becomes **more complicated** for more timepoints

- **Consistent and asymptotically more efficient** than IPW estimators provided that
 - MAR holds (allowing for time-varying covariates)
 - Outcome models are correctly specified
Augmented Inverse Probability Weighting

- Becomes more complicated for more timepoints

- Consistent and asymptotically more efficient than IPW estimators provided that
 - MAR holds (allowing for time-varying covariates)
 - Outcome models are correctly specified

- (Augmented) inverse probability weighting works for different kind of endpoints
Augmented Inverse Probability Weighting

- Becomes more complicated for more timepoints

- Consistent and asymptotically more efficient than IPW estimators provided that
 - MAR holds (allowing for time-varying covariates)
 - Outcome models are correctly specified

- (Augmented) inverse probability weighting works for different kind of endpoints

- How can we obtain more robustness against model misspecification?
Augmented Inverse Probability Weighting

- **Robustness against model misspecification** can be obtained by using weights:

 \[\prod_{t=1}^{2} \frac{1}{P(E_t=0|A, E_{t-1}=0, \bar{X}_{t-1}, \bar{Y}_{t-1})} \text{ in Step 1} \]

 \[\frac{1}{P(E_1=0|A, X_0, Y_0)} \text{ in Step 3} \]
Augmented Inverse Probability Weighting

- **Robustness against model misspecification** can be obtained by using weights:

 \[\prod_{t=1}^{2} \frac{1}{P(E_t=0|A,E_{t-1}=0,X_{t-1},Y_{t-1})} \text{ in Step 1} \]

 \[\frac{1}{P(E_1=0|A,X_0,Y_0)} \text{ in Step 3} \]

- **Double robust**: Consistent if either outcome models or models for not having a relevant intercurrent event (no missingness) are correctly specified
Assumption “free” estimator

Previous estimator (without weights) naturally leads to an “assumption free” estimator\(^2\) for treatment effect in a COVID-19 free world

Assumption “free” estimator

- “Assumption free” estimator because
 - Asymptotically unbiased estimator, even if outcome models are misspecified
 - No statistical modeling assumptions
 - No MAR assumption for post-baseline data observed after the COVID-19 outbreak
 - Overcomes misclassification of COVID-19-related intercurrent events
Assumption “free” estimator

“Assumption free” estimator because

- **Asymptotically unbiased** estimator, even if outcome models are misspecified
 - No statistical modeling assumptions
- No MAR assumption for post-baseline data observed after the COVID-19 outbreak
- Overcomes misclassification of COVID-19-related intercurrent events

Different extensions possible: pandemic free world, allowing for population shift, ...
Thank you for your attention!

This project has received funding from VLAIO under the Baekeland grant agreement HBC.2017.0219.

Interested in targeted learning?
https:// mastat. ugent. be/ WebinarT argetedLearningRCTs/