Electronic Health Records used to derive Control Arms for Single-Arm oncology trials: Proof of concept using RCT’s in lung cancer

Gonzalo Duran-Pacheco on behalf of: Gillis Carrigan, Samuel Whipple, William B. Capra, Michael D. Taylor, Michael Lu, Brandon Arnieri, Jeffrey S. Brown, Amy Abernethy, Ryan Copping and Kenneth J. Rothman

Basel Biometrics Society, May 2019
Disclaimer

• I'll present this work on behalf of those who actually conducted this study
• I might not be able to answer some questions, I'll do my very best
• EC instead of SC
Content

- The RCT as a gold standard for the study of causation
- External controls for lung cancer trials using EHR
 - Background
 - Process
 - Results
 - Conclusions and next steps
The Randomized Controlled Trial as a Gold Standard for the study of causation
Causal Effects of Treatment A

- Counterfactuals and observed outcomes. Be:
 - Y the observed outcome under treatment A ($A = 0, 1$)
 - $Y_{a=0}$ the potential outcome had $A = 0$
 - $Y_{a=1}$ the potential outcome had $A = 1$

The **individual causal effect** : $ICE = Y_{a=1} - Y_{a=0}$

The **population causal effect** : $PCE = E[Y_{a=1}] - E[Y_{a=0}]$

- Causation and Correlation
 $E[Y_{a=1}] - E[Y_{a=0}] \neq E[Y|A=1] - E[Y|A=0]$

Fundamental problem: Estimate PCE when only one counterfactual is observed
Causal Effects and RCT

• Under which conditions is \(E[Y_{a=1}] - E[Y_{a=0}] = E[Y | A=1] - E[Y | A=0] \)?
 - Exchangeability: \(Y_a \perp A \)
 - Consistency: \(Y_a = Y \) when a subject received treatment \(A = a \)
 - Positivity: \(f_{A|L}(a | l) > 0 \) if \(f_L(l) \neq 0 \) (with confounding factors \(L \))

• Under ideal RCT conditions (i.e. full compliance, no loss to-follow-up, blind assignment)
 - \(E[Y | A=1] = E[Y_a | A=1] \) a for given \(a \)
 - \(E[Y_a | A=0] \)
 - \(E[Y_a] \)

\(E[Y_a] \perp A \ \forall \ a \ (0, 1) \)

\(\therefore \) Equation above holds
Conditional exchangeability

- Same as above but
 \[E[Y_a] \perp A \mid L \]

 where \(L \) is a vector of covariates
 \[E[Y_{a=1}] - E[Y_{a=0}] \mid L = E[Y \mid A=1] - E[Y \mid A=0] \mid L \]

- Example:
 - The Propensity Scores Theorem:
 - Be treatment A with values 0 and 1
 - The propensity of “choosing” treatment given covariates \(L \):
 \[PS(L) = P(A=a \mid L) \]

 \[\text{If} \ Y_a \perp A \mid L \quad (\text{Conditional Independence Assumption}) \]

 \[\text{then} \ Y_a \perp A \mid PS(L) \quad (\text{PST}) \]
External Controls for Lung Cancer RCTs using EHR: Background
Background

- Accelerated or breakthrough regulatory approval based on single-arm trials often
 - standard-of-care control arm is not included, challenges in interpretation of efficacy
- External controls (EC) derived from electronic health record (EHR) databases may provide an additional context for interpretation
- Curated EHR datasets are now large enough, with sufficient clinical detail, to create contemporaneous EC groups
- The Flatiron Health database is a longitudinal, demographically and geographically diverse database derived from EHR data
 - 260 community-based cancer treatment clinics and 3 academic networks, > 2 million active cancer patients in the US
 - High quality mortality data for lung cancer benchmarked against the US National Death Index
Background

- Efforts towards EC
Objective

- To assess how closely results from RCTs on aNSCLC could be replicated by substituting EHR-based EC groups as the comparator
External Controls for Lung Cancer RCTs using EHR: Cohorts creation and Analysis
Trials selection

- Study on all Roche-sponsored aNSCLC RCT meeting the following:

 a) First patient enrolled on or after January 1, 2011
 b) mOS attained, findings presented in a journal or at a congress, by March 31, 2018
 c) including at least one US study site
 d) in the case of a biomarker-defined study population, availability of the biomarker within the curated EHR dataset
Retrieve patient level data and verify trial results

- Verify RCT results published in public forums
 - BL and demographics (Table 1)
 - Main results

OS results for IMpower150 presented at ESMO

- Early OS data demonstrate promising OS benefit with Arm B vs Arm C treatment regimens despite lack of data maturity

Use case example – IMpower150 trial

Phase 3 RCT looking at carboplatin + paclitaxel + bevacizumab vs or without atezolizumab (PD-L1 inhibitor) in frontline, non-squamous aNSCLC
Review trial protocol and identify criteria to apply

• Done cross-functionally with the study team

• Go through the I/E criteria one by one, flagging those criteria which can be applied to the EC cohort
 • Not everything will be able to be applied
 • e.g. life expectancy, comorbidities, other medications, pregnancy, etc..
 • For transparency, those criteria that are unable to be applied should be called out

• We found it especially beneficial to sit down with clinical scientists to review certain criteria and decide how best to apply to Flatiron
 • Often some “translation” needs to occur between protocol and Flatiron (e.g. staging)
Build EC cohort

• Select patients from the EHR cohort that received standard-of-care treatment as in the trial

• Apply RCT I/E criteria available in the EHR to select EHR-based controls comparable in terms of demographic and clinical characteristics with RCT patients
 – Attrition rates displayed at each step
 • Alternatively, make each criteria a flag in your dataset so that you can easily turn them on/off in different orders
 – Some criteria will be straightforward
 • Therapy of interest, Histology, Age
 – For others (ECOG and lab values), we’ve developed some business rules to alleviate issues like high levels of missingness
Data Analysis

• **Primary endpoint:** time from randomization or treatment initiation (EHR) to death (OS)

• **Statistical Analysis:**
 - Proportional hazards cox model used to estimate treatment effects (HR) comparing the experimental trial arms with EC
 - PS obtained: Probability of being in the trial treatment arm rather than in the EC given \(L \)
 - \(L = \) age, gender, race, smoking history, histology, disease stage at initial diagnosis, time from initial diagnosis to either the start of treatment (EHR data) or randomization (trial data)
 - \(L \) derived from discussions with subject matter experts
Data Analysis

• **PS Methods applied:**
 - PS stratification
 - IPTW (ATE, ATT)
 - Cox PH adjusting directly for \(L \)
 - Weights stabilization: trimming/truncation

• Sensitivity Analysis
Results
Trial selection

- From 217 RCT (8 drugs) to 9 eligible RCT
- 11 experimental arms
Building EC cohorts

Initial EC EHR group size before restriction (same treatment line of therapy as trial control arm)

Flatiron aNSCLC EHR
N=48,856

NCT02008227
N=1397 D
(atezolizumab)
NCT01903993
N=1397 D
(atezolizumab)
NCT02366143
N=1606
(atezolizumab)
1L B or C or P

NCT01351415
N=3063
(bevacizumab)
2L D/PE/E

NCT01493843
N=1606 B+C+P
N=6475 C+P
(atezolizumab)
NCT01519804
N=6506
1L PLT+

NCT01496742
N=1609 (B+
PLT)/5391

Apply Trial Inclusion/Exclusion Criteria
Histology/ECOG/Labs/Smoking History/Disease Stage/Age/Prior treatment/washout period

Final Group Size

NCT02008227
N=547
NCT01903993
N=496
NCT02366143
N=602
NCT01351415
N=381
NCT01493843
N=1,196 (SCC)
862(NSCC)
NCT01519804
N=1,908
NCT01496742
N=930 & 3200
NCT01366131
N=1,908
N=963

B=bevacizumab PE=pemetrexed
C=carboplatin PLT=platinum
D=docetaxel
P=paclitaxel
NSCC=non squamous cell carcinoma
SCC=squamous cell carcinoma
Trial Results

- Treatment effect estimates

<table>
<thead>
<tr>
<th>Study ID</th>
<th>Group Comparison</th>
<th>N</th>
<th>Events</th>
<th>N</th>
<th>Events</th>
<th>RCT HR (95% CI)</th>
<th>EC adjusted HR (95% CI)</th>
<th>Difference (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[1] NCT02008227</td>
<td></td>
<td>425</td>
<td>271</td>
<td>425</td>
<td>298</td>
<td>0.73 (0.62, 0.86)</td>
<td>0.71 (0.59, 0.84)</td>
<td>0.028 (-0.132, 0.188)</td>
</tr>
<tr>
<td>[2] NCT01903993</td>
<td></td>
<td>144</td>
<td>78</td>
<td>143</td>
<td>95</td>
<td>0.72 (0.54, 0.98)</td>
<td>0.66 (0.50, 0.88)</td>
<td>0.087 (-0.176, 0.350)</td>
</tr>
<tr>
<td>[3] NCT02366143</td>
<td></td>
<td>356</td>
<td>144</td>
<td>336</td>
<td>166</td>
<td>0.77 (0.61, 0.96)</td>
<td>0.75 (0.59, 0.94)</td>
<td>0.026 (-0.179, 0.231)</td>
</tr>
<tr>
<td>[4] NCT01351415</td>
<td></td>
<td>245</td>
<td>194</td>
<td>240</td>
<td>193</td>
<td>0.88 (0.74, 1.04)</td>
<td>0.89 (0.75, 1.05)</td>
<td>-0.011 (-0.202, 0.179)</td>
</tr>
<tr>
<td>[5] NCT01493843:</td>
<td>Arm A vs. B</td>
<td>126</td>
<td>79</td>
<td>125</td>
<td>60</td>
<td>1.03 (0.75, 1.41)</td>
<td>0.95 (0.68, 1.33)</td>
<td>0.081 (-0.175, 0.337)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>79</td>
<td>59</td>
<td>79</td>
<td>43</td>
<td>1.04 (0.72, 1.50)</td>
<td>1.07 (0.78, 1.49)</td>
<td>-0.028 (-0.319, 0.262)</td>
</tr>
<tr>
<td>[7] NCT01493843:</td>
<td>Arm E vs. F</td>
<td>62</td>
<td>42</td>
<td>30</td>
<td>13</td>
<td>1.27 (0.75, 2.15)</td>
<td>1.32 (0.90, 1.93)</td>
<td>-0.039 (-0.389, 0.312)</td>
</tr>
<tr>
<td>[8] NCT01519804</td>
<td></td>
<td>55</td>
<td>36</td>
<td>54</td>
<td>33</td>
<td>0.89 (0.55, 1.46)</td>
<td>1.43 (0.97, 2.09)</td>
<td>-0.474 (-0.835, -0.114)</td>
</tr>
<tr>
<td>[9] NCT01496742:</td>
<td>Cohort 1</td>
<td>69</td>
<td>32</td>
<td>70</td>
<td>29</td>
<td>1.38 (0.75, 2.56)</td>
<td>1.26 (0.80, 1.97)</td>
<td>0.091 (-0.310, 0.492)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>59</td>
<td>37</td>
<td>61</td>
<td>36</td>
<td>1.15 (0.68, 2.56)</td>
<td>1.11 (0.73, 1.70)</td>
<td>0.035 (-0.332, 0.403)</td>
</tr>
<tr>
<td>[11] NCT01366131</td>
<td></td>
<td>52</td>
<td>24</td>
<td>52</td>
<td>18</td>
<td>1.08 (0.52, 2.21)</td>
<td>0.90 (0.53, 1.51)</td>
<td>0.182 (-0.276, 0.640)</td>
</tr>
</tbody>
</table>
Treatment effects with EC

- Trials results replicated:
 - Treatment effect estimates, except for one trial
 - Conclusions from statistical tests (H0: logHR = 0)
Conclusions

- Properly selected and adjusted control arms from high quality contemporaneous EHR data could be used to replicate results from RCT in aNSCLC
Next steps

• Fully understand why and when EC don’t work
• Methods to optimize and validate EC for single arm trials
 – Estimands & PS methods
 – Unmeasured confounding
 – rwPFS and rwOS
 – Bayesian methods
• Understand data
• Apply learnings and do the same in other tumor types (Breast, mCRC)
• Hybrid Controls (HC)
Doing now what patients need next