BORROWING EXTERNAL CONTROLS FOR AN EVENT-DRIVEN PEDIATRIC TRIAL IN PAH: A CASE STUDY

Adele Morganti, Matthieu Villeneuve Actelion JNJ Biostatistics
Cristina Sotto, An Vandebosch JNJ SDS-SMM
OUTLINE

- Pediatric PAH - Background
- Case study: borrowing external controls for an event-driven pediatric trial in PAH
- Conclusions
PEDIATRIC PAH – BACKGROUND

Rare disease affecting the vessels of pulmonary circulation

- Adult efficacy proven by time to disease progression or exercise capacity.

Partial extrapolation accepted by HAs

- No PD/intermediate endpoint that can be defined across pediatric subsets
 - Effect on pulmonary vascular resistance requires invasive approach, unacceptable in children (nowadays)
 - Exercise capacity can only be assessed in developmentally able children
As of today, **time to disease worsening** represents the only clinically meaningful efficacy endpoint to study PAH in the pediatric patients (Gomberg-Maitland 2013)

Conducting event driven study is challenging due to:

- the rarity of the disease
- increasing off-label use in the pediatric patients
STANDARD SUPERIORITY EVENT-DRIVEN DESIGN

Standard TTE Design
- accrual rate=5/months
- max study duration=60 months
- 50% survival @18 mos. for CONTROL
- HR=0.6 (from adult study)
- 1-sided significance level=2.5%
- 1:1 randomization

N=205
- power >80%
- events: 129

Based on HA interactions:
Strict control of type I at 0.025 (1-sided)

Sponsor concern:
Power > 80% (linked to conclusiveness for FDA discussion for written request)

Study duration needs to meet regulatory timelines
A POSSIBLE SOLUTION: BORROWING CONTROLS

Decrease sample size by borrowing **external controls** from an ongoing pediatric PAH trial with a different drug and same primary endpoint

Fit with Pocock criteria (1976) external control

1. same SoC treatments
2. contemporary with same eligibility criteria
3. same endpoint: time to disease progression (with adjudication)
4. WHO group 1, same etiology
5. similar geographical landscape
6. patient selection and accrual expected to be similar

Only one contemporary data source for external controls!
ROBUST PRIOR

- Bayesian methods for incorporating external control information for a new trial → exchangeability assumption
 - always a possibility of prior-data conflict

- Robust approach
 - combines an informative and a vague prior, appropriately weighted
 \[p(\theta) = w_1 p_1(\theta) + (1 - w_1) p_2(\theta) \]
 mixture prior informative part vague part

 - updated (posterior) weights shift to the corresponding component depending on the degree of (dis)similarity

Schmidli et al. (2014) Biometrics 70: 1023-1032.
BAYESIAN INFORMATIVE PRIOR

PRIOR for
\[\log(\text{HR}) = \log(\lambda_a) - \log(\lambda_c) \]

Asymptotic Normal distribution approximation of \(\log(\text{HR}) \) is used.

We applied robust prior and power prior approaches for \(\log(\lambda_c) \) and compared the operating characteristics in this context.
PAH EVENT-DRIVEN TRIAL: BAYESIAN APPROACH

Simulations were performed to explore operational characteristics

PRIOR:

ONGOING TRIAL FOR CONTROL

Robust Prior Approach
- weight of informative part: 0.7, 0.9
- vague/informative variance ratio: 1000
- no. of events for CONTROL in parallel trial: 20, 40
- 10,000 simulated trials
- varying control event rate

Power Prior Approach
- full borrowing (alpha=1)
- static

ACCUMULATED DATA:

TRIAL ON NEW DRUG VS. CONTROL

Standard TTE Design
- accrual rate=5/mo.
- 50% survival @18 mos. for CONTROL
- HR=0.6 (from GRIPHON adult study)
- 1-sided significance level=2.5%
- 1:1 randomization

Sample size/events reduced to N=150 / 89
BORROWING WINDOW

Simulations were performed to identify an efficient borrowing window:

An efficient borrowing window was defined as:

- type I < 0.025 (1-sided)
- power > 80%
Operational Characteristics: Type I Error and Power Varying the Event Rate of the External Control Group
40 Events Borrowed; Accumulated Data: N=150 / e=89; Weight of informative Prior: 0.7

HR=0.60
- robust prior
- power prior

HR=1
- robust prior
- power prior

% of trust with a posterior probability of (HR=1) strictly greater than 0.975

Prior cumulative incidence at 18 months
Operational Characteristics: Type I Error and Power Varying the Event Rate of the External Control Group

40 Events Borrowed; Accumulated Data: N=150/e=89; Weight of informative Prior: 0.7

HR=0.60
- robust prior
- power prior

HR=1
- robust prior
- power prior

% of trials with a posterior probability of (HR=1) strictly greater than 0.025

Prior cumulative incidence at 18 months
Operational Characteristics: Type I Error and Power Varying the Event Rate of the External Control Group
40 Events Borrowed; Accumulated Data: N=150 /e=89; Weight of informative Prior: 0.9

HR=0.60
- robust prior
- power prior

HR=1
- robust prior
- power prior

% of trials with a posterior probability of (HR-1) strictly greater than 0.95
Prior cumulative incidence at 18 months
Operational Characteristics: Type I Error and Power Varying the Event Rate of the External Control Group
40 Events Borrowed; Accumulated Data: N=150 /e=89; Weight of informative Prior: 0.9

HR=0.60
- robust prior
- power prior

HR=1
- robust prior
- power prior
CONCLUSIONS

- When strict type I and II error control is required, robust and power prior approaches require strict homogeneity between internal and external controls (low probability of success).

- The borrowing window is similar when comparing robust prior and power prior approach.
 - Varying the prior weight does not address departure from homogeneity in our case (only one source).
THANK YOU.
REFERENCES

[Schmidli 2014] Schmidli et al. “Robust Meta-Analytic-Predictive Priors in Clinical Trials with Historical Control Information“, Biometrics 2014; 70 1023-1032
BACK-UP
Operational Characteristics: Type I Error and Power Varying the Event Rate of the External Control Group

20 Events Borrowed; Accumulated Data: N=150 /e=89; Weight of informative Prior: 0.7

HR=0.60
- robust prior (solid green line)
- power prior (dashed green line)

HR=1
- robust prior (solid red line)
- power prior (dashed red line)
Operational Characteristics: Type I Error and Power Varying the Event Rate of the External Control Group
20 Events Borrowed; Accumulated Data: N=150 /e=89; Weight of informative Prior: 0.9

HR=0.60
- robust prior

HR=1
- robust prior

Priors and their impact on the cumulative incidence at 18 months.