Overview

- Introduction and motivation
- Case study applying multi-criteria decision analysis (MCDA) in benefit-risk assessment of relapsing-remitting multiple sclerosis (RRMS) treatments
- Lessons learnt
Etiology

- This work was done by Pedro Oliveira on a summer placement from Sheffield University

- The principal objectives were
 - To gain experience in Multi-Criteria Decision Analysis
 - To produce a thesis for Pedro’s degree

- This case study was used as an example to achieve these objectives

What is a Benefit-Risk Assessment?

Both a quantitative method and a qualitative framework

- Qualitative framework gives the structure
 - What is the decision that the assessment is supporting?
 - Which drugs, indication, patient population and perspective?
 - Which benefit and risk criteria are relevant to the assessment?
 - Which sources of evidence are relevant?
 - How to trade-off benefits and risks?

- Quantitative method
 - Methods for collecting and synthesizing the objective evidence and subjective judgments
 - Metrics for measuring the benefit-risk (e.g. clinical utility index)
What a Benefit-Risk Assessment is NOT
It does not make decisions, rather it supports decision makers

- Benefit-risk assessment does not give you the answer
- Experts make the decision
 - Expert judgment plays the central role
 - Frameworks and models by themselves are insufficient
- Expert knowledge is structured and decomposed in a framework. This helps to:
 - Understand the problem
 - Assess the main drivers of a decision
 - Communicate issues in a transparent, rational and consistent way
 - Appropriately handle uncertainty and perform sensitivity analysis

Motivation for Benefit-Risk methods
- Increasing attention is being given to quantitative benefit-risk assessments
 - EMA Benefit-Risk methodology project
 - PhRMA BRAT Framework
 - IMI PROTECT WP5
 - ISPOR Risk-Benefit Management Working Group
 - EFPSI working group on Benefit-Risk
Motivation for using relapsing remitting multiple sclerosis (RRMS) case study

- RRMS is a serious disease affecting the central nervous system
 - Progressive, chronic, inflammatory disease that can seriously affect quality of life

- The main current first-line treatments
 - Are effective at reducing the progression of the disease and the rate of relapse
 - But also have frequent or serious adverse events associated with them
 - How to judge if the benefits are worth the risks?

<table>
<thead>
<tr>
<th>Lessons Learnt in MCDA</th>
<th>Richard Nixon</th>
<th>May 2011</th>
</tr>
</thead>
</table>

Susan has RRMS and is deciding on the treatment she prefers.

<table>
<thead>
<tr>
<th></th>
<th>Avonex</th>
<th>Movectro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relapses per year</td>
<td>0.27</td>
<td>0.14</td>
</tr>
<tr>
<td>Chance of flu-like symptoms in during the next two-years</td>
<td>94%</td>
<td>43%</td>
</tr>
<tr>
<td>Convenience</td>
<td>Weekly IM injection</td>
<td>Monthly oral</td>
</tr>
<tr>
<td>Serious herpes zoster</td>
<td>0%</td>
<td>0.2%</td>
</tr>
<tr>
<td>Hepatic adverse events</td>
<td>0%</td>
<td>0.7%</td>
</tr>
</tbody>
</table>

- Are there other adverse events she should also consider?
- Which treatment should she take?
- Or should she consider Copaxone or Tysabri?
Steps in performing a benefit-risk analysis

PrOACT-URL framework

- Generic framework for framing and analyzing decisions
- Apply framework to multi-criteria decision analysis (MCDA)
- Some of the steps will be more substantive than others when applied to MCDA

Problem

Identify the fundamental problem

- Four first-line therapies for RRMS (in summer 2010)
 - Avonex, Copaxone, Tysabri and Movectro
- These drugs have favourable and unfavourable effects
- Take the patient perspective
- How do we decide among them?
Objectives

Identify the overall value and the criterion categories

Decision

- Treatment

Criteria

- Adverse events
- Efficacy
- Convenience

Criteria categories

- Flu-like symptoms
- Injection-site reactions
- Serious herpes zoster
- Hepatic AE
- Annual relapse rate
- EDSS progression

Outcome measures

- # patients/1000 after 2 years
- % not progressing after 2 years

Overall value

Benefit-risk

Adverse events of first-line treatments

Many adverse events are observed

<table>
<thead>
<tr>
<th></th>
<th>Avonex</th>
<th>Copaxone</th>
<th>Tysabri</th>
<th>Movelcro</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hepatic and hematologic abnormalities</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Common adverse events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Injection-site reactions</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Flu-like symptoms</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Fatigue</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Headache</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immediate post-injection reactions</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lipatrophy</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Serious adverse events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rare malignancies</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Progressive Multifocal Leukoencephalopathy</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Serious herpes zoster</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Adverse events of first-line treatments

Many adverse event types can be reported in different ways

- Flu-like symptoms reported in many ways in different studies
- How to combine these onto a common scale?

<table>
<thead>
<tr>
<th>Headache</th>
<th>Rhinitis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chills</td>
<td>Cough</td>
</tr>
<tr>
<td>Upper respiratory tract infection</td>
<td>Bronchitis</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>Dyspnea</td>
</tr>
<tr>
<td>Oropharyngeal pain</td>
<td>Influenza / flu syndrome</td>
</tr>
<tr>
<td>Laryngismus</td>
<td>Lower respiratory tract or lung infection</td>
</tr>
<tr>
<td>Pyrexia / fever</td>
<td>Flu-like symptoms</td>
</tr>
<tr>
<td>Chronic sinusitis</td>
<td>Pneumonia</td>
</tr>
</tbody>
</table>

Alternatives

Identify the possible decisions to be evaluated against the criteria

- Generally in MCDA there are multiple decisions to be made
- This leads to many combinations of possible decisions (strategies)
- However, in this situation there is only one decision to make: which treatment should the patient take to treat her RRMS?
 - Avonex: 30mcg, im, qw
 - Copaxone: 20mg, sc, qd
 - Tysabri: 300mcg, iv, qm
 - Movectro: 3.5mg/kg, oral, 8-20 times per year
Consequences

What are the observations relevant to the criteria?

- We considered data only from the pivotal Phase III studies
 - Benefits are calibrated to Movectro patients by using the Movectro placebo benefit and the relative/hazard ratio of the given drug compared to its respective placebo.

<table>
<thead>
<tr>
<th></th>
<th># Patients / 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avonex</td>
</tr>
<tr>
<td>Adverse events</td>
<td></td>
</tr>
<tr>
<td>Flu-like symptoms</td>
<td>938</td>
</tr>
<tr>
<td>Injection-site reactions</td>
<td>125</td>
</tr>
<tr>
<td>Serious herpes zoster</td>
<td>0</td>
</tr>
<tr>
<td>Hepatic adverse events</td>
<td>0</td>
</tr>
<tr>
<td>Benefits</td>
<td></td>
</tr>
<tr>
<td>Relapses</td>
<td>270</td>
</tr>
<tr>
<td>EDSS progression</td>
<td>134</td>
</tr>
<tr>
<td>Convenience</td>
<td>i.m. qw</td>
</tr>
</tbody>
</table>

Trade-offs (1)

Partial value functions for each criterion

- A partial value function maps the range of plausible outcomes for each criteria to the range \([0,1]\)
- Assume a linear partial value function for each adverse event and benefit criteria

![Graph showing a partial value function for a criterion](image)

Number of relapses per 1000 patients at one year
Trade-offs (2)

Within-category weights are elicited

- Benefit-risk analysis must contain subjective value judgments
- We used a “bottom-up swing weights” method
 1. Rank-order the criteria by the relative value of bringing each from its worst to its best plausible outcome
 2. Assign the top-ranked criterion a weight of 100, and assign the others weights corresponding to their (subjective) relative values.

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Unit of measurement</th>
<th>Worst</th>
<th>Best</th>
<th>Rank</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relapses</td>
<td>Number of relapses in 1000 patients in one year</td>
<td>400</td>
<td>80</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Disability progression</td>
<td>Number of patients out of 1000 whose EDSS scores increases by at least 1 point at two years</td>
<td>270</td>
<td>100</td>
<td>1</td>
<td>100</td>
</tr>
</tbody>
</table>

Trade-offs (3)

Between-category weights are elicited

- Take the top-ranked criterion from each category, and compare these in the same way as the within-category weights

<table>
<thead>
<tr>
<th>Category</th>
<th>Unit of measurement</th>
<th>Worst</th>
<th>Best</th>
<th>Rank</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convenience</td>
<td>Administration route and frequency</td>
<td>Oral, once a month</td>
<td>Subcutaneous injection, daily</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Disability progression</td>
<td>Number of patients out of 1000 whose EDSS scores increase by at least 1 point at two years</td>
<td>270</td>
<td>100</td>
<td>1</td>
<td>100</td>
</tr>
<tr>
<td>Serious herpes zoster</td>
<td>Number of patients out of 1000 with AE in two years</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>90</td>
</tr>
</tbody>
</table>
Trade-offs (4)

Weights measure and accumulate the relative values of the criteria

- Between-category weights
- Within-category weights
- Normalized between-category weights
- Normalized within-category weights
- Cumulative weights

\[
\begin{align*}
W_{b1} &= r_b^* r_{b1}^* \\
\sum w_i &= 1
\end{align*}
\]

Trade-offs (5)

Put it all together

Decision	Criterion category	Criterion	Value $v_i(t)$	Cumulative weight W_i
Treatment (t)	Adverse events	Flu-like symptoms	$v_{a1}(t)$	W_{a1}
	Injection-site reactions	$v_{a2}(t)$	W_{a2}	
	Serious herpes zoster	$v_{a3}(t)$	W_{a3}	
	Hepatic AE	$v_{a4}(t)$	W_{a4}	
Efficacy	Annual relapse rate	$v_{b1}(t)$	W_{b1}	
	EDSS progression	$v_{b2}(t)$	W_{b2}	
Convenience		$v_c(t)$	W_c	

\[
\sum w_i v_i(t)
\]
Overall results

- Although Tysabri has the highest benefit-risk from efficacy, the convenience of Movectro gives it the highest overall benefit-risk.
Uncertainty

Deterministic sensitivity analysis

- The between-category efficacy weight would have to change from 0.45 (basecase) to 0.68 for Tysabri to be preferred treatment

![Graph showing value versus relative weight for different treatments](image1.png)

Uncertainty

Stochastic sensitivity analysis

- Could also perform a stochastic sensitivity analysis of the
 - Clinical effects of the different treatments
 - Judgments of the different treatments

- Stochastic sensitivity analysis could be performed, e.g. by using Monte Carlo simulation with sampling from distributions of various parameters
 - For clinical effects this comes from the evidence synthesis
 - For judgments distributions could be based on eliciting distributions for the weights, and/or combining weights from different people

- Results would include
 - Distribution of benefit-risk score for each treatment
 - Probabilities that each treatment has the highest score
Risk tolerance and linked decisions

Risk in this context mean uncertainty

- **Risk tolerance**
 - Uncertainty analysis indicates how robust the benefit-risk assessments are
 - Are there factors that could affect the decision makers attitude and accept more uncertainty? E.g. Orphan drug or high unmet need

- **Linked decisions**
 - Consistency with other decisions
 - How this decision could set a president for future decisions

Lessons learned

Improvements and developments

- Perform a more rigorous evidence synthesis, for example using mixed-treatment-comparisons, possible with case-mix adjustment.
- Choice of adverse events should have included progressive multifocal leukoencephalopathy (PML) for Tysabri.
- Use Patient Reported Outcomes, for example discrete choice experiments included in a clinical study, to assess patient values directly from patients.
- Include a probabilistic sensitivity analysis on clinical parameters.
- Use an underlying disease progression model to incorporate long-term effects of RMMMS.
- Use MCDA to identify patient segments who would most benefit from a treatment.
- Use MCDA in development decisions. E.g. Go/no-go or indication selection.
Take home messages

- MCDA is a framework well suited to benefit-risk analysis
- MCDA analysis does not give you the answer
 - It is a framework for decomposing and understanding a problem
 - Assesses the main value drivers of a decision
 - Communicate issues in a transparent, rational and consistent way
- Benefit-risk analysis is conceptually easy but hard to operationalize
 - Define consistent criteria across decision options, find data matching these criteria, and elicit value judgments

Acknowledgements

- Didier Renard
- Francois Mercier
- Gordon Graham
- Gordon Francis
- Fabrice Bancken
- William Collins
- Marisa Bacchi
- Daniela Piani Meier
- Ana de Vera
References

- **MCDA**

- **Working groups**

Appendix

- | Lessons Learnt in MCDA | Richard Nixon | May 2011 |
- | Lessons Learnt in MCDA | Richard Nixon | May 2011 |
Assumptions of linear additive value model

- Partial value functions satisfy interval scale properties; changes in attributes rather than attributes themselves matter.
- Preferential independence: elicitation of relative preference between a subset of criteria not affected by levels of attributes achieved in criteria outside the subset.
- Note: Linearity of partial value functions is not a feature of the linear additive model.

Trade-offs (1)

Partial value functions for each criterion

- A partial value function maps the range of plausible outcomes for each criterion to the range \([0,1]\).
- Assume a linear partial value function for each adverse event and benefit criteria.

<table>
<thead>
<tr>
<th>Convenience criteria</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral, once a month</td>
<td>1</td>
</tr>
<tr>
<td>Oral, daily</td>
<td>0.9</td>
</tr>
<tr>
<td>Intramuscular injection, once a week</td>
<td>0.4</td>
</tr>
<tr>
<td>Subcutaneous injection, daily</td>
<td>0</td>
</tr>
<tr>
<td>Intravenous infusion, every month</td>
<td>0.3</td>
</tr>
</tbody>
</table>

Number of relapses per 1000 patients at one year